
Microservices 
– experiences from the front line

Stig Irming-Pedersen





Device 
production

• 50 years old company

• Established globally with many 
subsidiaries/distributors/resellers 

• Challenge: Large and closed system landscape in 
HQ for internal use 

• Goal: Automate customer processes with self-
service 

• Strategy: Develop online ordering integrated with 
new ERP and other systems

Icons from www.flaticon.com



Content 
delivery

• 25 years old company

• Transforming business from shipping physical 
mediums to online streaming

• Challenge: The web is moving fast and the 
system is a large monolith

• Goal: API as a product 

• Strategy: Split into services first, then move 
authoritative data afterwards



Parallel 
distribution

• 15 years old company

• Rapid growth throughout Europe leveraging 
custom software for many different areas

• Challenge: Better insights across growing 
organization, and expansions require further 
custom software 

• Goal: Use shared system for standard 
functionality and produce custom software where 
necessary

• Strategy: Move to SaaS-provided ERP and 
leverage microservices



Microservice 
introduction

• Split software into smaller chunks

• … and leverage great principles for software 
development:

• Agile methodologies
• Domain driven design
• Clean code
• Test driven development
• Cross-functional teams
• Continuous integration
• Continuous delivery
• DevOps mindset
• Cloud native

Microservices



Microservice 
characteristics

• Autonomous for own functionality

• Authoritative for own data (master data)

• Run in isolated processes

• Individual technology choices

• Deployed independently

• Separate unit of scalability

• Part of distributed system

• Build to last for a long time

Microservices



Define
boundaries

Accounts

Drone management
Video 

surveillance

Drone sharing

Shipping
Third-party 

transporta6on

Call center

External system

External system

• Domain Driven Design by Eric Evans

• Bounded by business capabilities

• Stack fields that go together in piles

• High cohesion and invariants

• Core and supporting domains

• Strategic focus on differentiating softwareMicroservices



Focused
around 
organization

https://martinfowler.com/articles/microservices.html
Microservices

Conway’s law:

"organizations which design systems
... are constrained to produce 
designs which are copies of the
communication structures of
these organizations.“



Service
landscape

Service 
A ERP

Service 
BMail

Service 
C CRM

Microservices



APIs

Communcation

• REST: Richardsons maturity model
• 0. RPC
• 1. Resources
• 2. HTTP verbs
• 3. Hypermedia



Messaging

Communcation

Communication patterns:
• Orchestrated (commands)
• Choreographed (events)



Coupling

Behavioural

Temporal

high

low

lowhigh

Distributed
3-layer

Command
oriented

Event
oriented

Emergency
services

http://iansrobinson.com/2009/04/27/temporal-and-behavioural-coupling/Communcation



How we
chose com-
munication

Advocate services => REST

Many external clients => REST 

Integrating internal systems => Eventing

Communcation



Components 
and 
infrastructure

CODE

Azure

Monitoring Security

Data processing Network

CommunicationStorage



Cloud 
components

• Storage

• Communication

• Security

• Monitoring

• Processing

• Network

Azure



Azure
advantages

• Operation: setup, monitoring, updates

• SLA: typical three 9s or more

• Redundancy: duplicated across instances

• Replication: multiple copies of data (backup)

• Security: access control and encryption

• Hardening: continuous improvements

• Monitoring: metrics and logs

• Ecosystem: recommendations, policies and 
governance

Azure



Global 
presence

Azure introduktion



Splitting the 
monolith

PRESENTATION

APPLICATION

DATA

Azure



Hosting levels

On-premise

Code

Data

Runtime

Middleware

Operating system

Virtualization

Servers

Storage

Network

Infrastructure
as a Sevice

(IaaS)

Code

Data

Runtime

Middleware

Operating system

Virtualization

Servers

Storage

Network

Platform
as a service

(PaaS)

Code

Data

Runtime

Middleware

Operating system

Virtualization

Servers

Storage

Network

Software
as a service

(SaaS)

Code

Data

Runtime

Middleware

Operating system

Virtualization

Servers

Storage

Network

Azure compute



Serverless
• Code is run automatically

without explicit decision for capacity

• Use back-end services
without knowledge of servers

• Pay only for actual usage
not for reserved resources

Azure compute



Chosen
infrastructure
and main
components

Azure

On-premise



Hexagonal
architecture Domain

model

Azure

Domain
model

Domain services

Application services

Infrastructure

User 
inter-
face

Tests



CI/CD



Monitoring



Device 
production

ERP transition halted,
but microservices lives on

Microservices is now a strategy
at management level

Lack of organizational structure
for one of the microservices

Enabling new technologies
has proved it’s worth



Micro services 
for music
streaming

REST APIs in 
ASP.NET, C# 100.000+ 

simultaneous users

10 services

6 developers

No testers

10.000 unit tests

Continuous
delivery

Content 
delivery

Story



Parallel 
distribution

Events are driving
integration work

Lack of monitoring
is starting to hurt

Serverless is being
utilized

Shim-services valuable
for SaaS solutions



Microservice 
highlights

• Bounded by strategic business capability

• Focused development by cross-functional team

• Agile process with rapid feedback

• Quality ensured by continuous integration and 
automated testing

• Fast deployment with continuous delivery and 
infrastructure-as-code

• Operation using devops mindset

• Use suiting technology in every case

• Elastic scalability using cloud platforms



Want to know more?

• https://copenhagensoftware.com/hvad-er-
microservices/

• @CPHSoft and @StigIP on Twitter

https://copenhagensoftware.com/hvad-er-microservices/

